Плавный пуск двигателя постоянного тока с использованием таймеров. Применение микросхемы КР1182ПМ1. Плавный пуск электродвигателя Плавный запуск электродвигателя постоянного тока

Характерным для любого электродвигателя в процессе запуска является многократное превышение тока и механической нагрузки на приводимое в действие оборудование. При этом также возникают перегрузки питающей сети, создающие просадку напряжения и ухудшающие качество электроэнергии. Во многих случаях требуется устройство плавного пуска (УПП).

Необходимость плавного пуска электродвигателей

Статорная обмотка является катушкой индуктивности, состоящей из активного сопротивления и реактивного. Значение последнего зависит от частоты подаваемого напряжения. При запуске двигателя реактивное сопротивление изменяется от нуля, а пусковой ток имеет большую величину, многократно превышающую номинальный. Момент вращения также велик и может разрушить приводимое в движение оборудование. В режиме торможения также появляются броски тока, приводящие к повышению температуры статорных обмоток. При аварийной ситуации, связанной с перегревом двигателя, возможен ремонт, но параметры трансформаторной стали изменяются и номинальная мощность снижается на 30 %. Поэтому необходим плавный пуск.

Запуск электродвигателя переключением обмоток

Обмотки статора могут соединяться "звездой" и "треугольником". Когда у двигателя выведены все концы обмоток, можно снаружи коммутировать схемы "звезда" и "треугольник".

Устройство плавного пуска электродвигателя собирается из 3 контакторов, реле нагрузки и времени.

Электродвигатель запускается по схеме "звезда", когда контакты К1 и К3 замкнуты. Через интервал, заданный реле времени, К3 отключается и производится подключение схемы "треугольник" контактором К2. При этом двигатель выходит на полные обороты. Когда он разгоняется до номинальных оборотов, пусковые токи не такие большие.

Недостатком схемы является возникновение короткого замыкания при одновременном включении двух автоматов. Этого можно избежать, применив вместо них рубильник. Для организации реверса нужен еще один блок управления. Кроме того, по схеме "треугольник" электродвигатель больше нагревается и жестко работает.

Частотное регулирование скорости вращения

Вал электродвигателя вращается магнитным полем статора. Скорость зависит от частоты питающего напряжения. Электропривод будет работать эффективней, если дополнительно менять напряжение.

В состав устройства плавного пуска асинхронных двигателей может входить частотный преобразователь.

Первой ступенью устройства является выпрямитель, на который подается напряжение трехфазной или однофазной сети. Он собирается на диодах или тиристорах и предназначен для формирования пульсирующего напряжения постоянного тока.

В промежуточной цепи пульсации сглаживаются.

В инверторе выходной сигнал преобразуется в переменный заданной частоты и амплитуды. Он работает по принципу изменения амплитуды или ширины импульсов.

Все три элемента получают сигналы от электронной схемы управления.

Принцип действия УПП

Увеличение пускового тока в 6-8 раз и вращающего момента требуют применения УПП для выполнения следующих действий при запуске или торможении двигателя :

  • постепенное увеличение нагрузки;
  • снижение просадки напряжения;
  • управление запуском и торможением в определенные моменты времени;
  • снижение помех;
  • защита от скачков напряжения, при пропадании фазы и др.;
  • повышение надежности электропривода.

Устройство плавного пуска двигателя ограничивает величину напряжения, подаваемого в момент пуска. Оно регулируется путем изменения угла открытия симисторов, подключенных к обмоткам.

Пусковые токи необходимо снижать до величины, не более чем в 2-4 раза превышающей номинал. Наличие байпасного контактора предотвращает перегрев симисторов после его подключения после того, как двигатель раскрутится. Варианты включения бывают одно-, двух- и трехфазные. Каждая схема функционально отличается и имеет разную стоимость. Наиболее совершенным является трехфазное регулирование. Оно наиболее функционально.

Недостатки УПП на симисторах:

  • простые схемы применяются только с небольшими нагрузками или при холостом запуске;
  • продолжительный запуск приводит к перегреву обмоток и полупроводниковых элементов;
  • момент вращения вала снижается и двигатель может не запуститься.

Виды УПП

Наиболее распространены регуляторы без обратной связи по двум или трем фазам. Для этого предварительно устанавливается напряжение и время пуска. Недостатком является отсутствие регулирования момента по нагрузке на двигатель. Эту проблему решает устройство с обратной связью наряду с выполнением дополнительных функций снижения пускового тока, создания защиты от перекоса фаз, перегрузки и пр.

Наиболее современные УПП имеют цепи непрерывного слежения за нагрузкой. Они подходят для тяжело нагруженных приводов.

Выбор УПП

Большинство УПП - это регуляторы напряжения на симисторах, различающиеся функциями, схемами регулирования и алгоритмами изменения напряжения. В современных моделях софтстартеров применяются фазовые методы регулирования электроприводов с любыми режимами пуска. Электрические схемы могут быть с тиристорными модулями на разное количество фаз.

Одно из самых простых - это устройство плавного пуска с однофазным регулированием через один симистор, позволяющее только смягчать механические ударные нагрузки двигателей мощностью до 11 кВт.

Двухфазное регулирование также смягчает механические удары, но не ограничивает токовые нагрузки. Допустимая мощность двигателя составляет 250 кВт. Оба способа применяются из расчета приемлемых цен и особенностей конкретных механизмов.

Многофункциональное устройство плавного пуска с трехфазным регулированием имеет самые лучшие технические характеристики. Здесь обеспечивается возможность динамического торможения и оптимизации его работы. В качестве недостатков можно отметить только большие цены и габариты.

В качестве примера можно взять устройство плавного пуска Altistart. Можно подобрать модели для запуска асинхронных двигателей, мощность которых достигает 400 кВт.

Устройство выбирается по номинальной мощности и режиму работы (нормальный или тяжелый).

Выбор УПП

Основными параметрами, по которым выбираются устройства плавного пуска, являются:

  • предельная сила тока УПП и двигателя должны быть правильно подобраны и соответствовать друг другу;
  • параметр количества запусков в час задается как характеристика софтстартера и не должен превышаться при эксплуатации двигателя;
  • заданное напряжение устройства не должно быть меньше сетевого.

УПП для насосов

Устройство плавного пуска для насоса предназначено преимущественно для снижения гидравлических ударов в трубопроводах. Для работы с приводами насосов подходят УПП Advanced Control. Устройства практически полностью устраняют гидроудары при заполненных трубопроводах, позволяя увеличить ресурс оборудования.

Плавный запуск электроинструментов

Для электроинструмента характерны высокие динамические нагрузки и большие обороты. Его наглядным представителем является угловая шлифовальная машинка (УШМ). На рабочий диск действуют значительные силы инерции в начале вращения редуктора. Большие перегрузки по току возникают не только при запуске, но и при каждой подаче инструмента.

Устройство плавного пуска электроинструмента применяется только для дорогих моделей. Экономичным решением является его установка своими руками. Это может быть готовый блок, который помещается внутри корпуса инструмента. Но многие пользователи собирают простую схему самостоятельно и подключают ее в разрыв питающего кабеля.

При замыкании цепи двигателя, на регулятор фазы КР1182ПМ1 подается напряжение и начинает заряжаться конденсатор С2. За счет этого симистор VS1 включается с задержкой, которая постепенно уменьшается. Ток двигателя плавно нарастает и обороты набираются постепенно. Двигатель разгоняется примерно за 2 сек. Мощность, отдаваемая в нагрузку, достигает 2,2 кВт.

Устройство можно применять для любого электроинструмента.

Заключение

Выбирая устройство плавного пуска, необходимо анализировать требования к механизму и характеристикам электродвигателя. Характеристики производителя находятся в прилагаемой к оборудованию документации. Ошибки при выборе быть не должно, поскольку нарушится функционирование устройства. Важен учет диапазона скоростей, чтобы выбрать лучшее сочетание преобразователя и двигателя.

Плавный пуск асинхронного двигателя – это всегда трудная задача, потому что для запуска индукционного мотора требуется большой ток и крутящий момент, которые могут сжечь обмотку электродвигателя. Инженеры постоянно предлагают и реализуют интересные технические решения для преодоления этой проблемы, например, использование схемы включения , автотрансформатора и т. д.

В настоящее время подобные способы применяются в различных промышленных установках для бесперебойного функционирования электродвигателей.

Из физики известен принцип работы индукционного электродвигателя, вся суть которого заключается в использовании разницы между частотами вращения магнитных полей статора и ротора. Магнитное поле ротора, пытаясь догнать магнитное поле статора, способствует возбуждению большого пускового тока. Мотор работает на полной скорости, при этом значение крутящего момента вслед за током тоже увеличивается. В результате обмотка агрегата может быть повреждена из-за перегрева.

Таким образом, необходимой становится установка мягкого стартера. УПП для трехфазных асинхронных моторов позволяют защитить агрегаты от первоначального высокого тока и крутящего момента, возникающих вследствие эффекта скольжения при работе индукционного мотора.

Преимущественные особенности применения схемы с устройством плавного пуска (УПП):

  1. снижение стартового тока;
  2. уменьшение затрат на электроэнергию;
  3. повышение эффективности;
  4. сравнительно низкая стоимость;
  5. достижение максимальной скорости без ущерба для агрегата.

Как плавно запустить двигатель?

Существует пять основных методов плавного пуска.

  • Высокий крутящий момент может быть создан путем добавления внешнего сопротивления в цепь ротора, как показано на рисунке.

  • С помощью включения в схему автоматического трансформатора можно поддерживать пусковой ток и крутящий момент за счет уменьшения начального напряжения. Смотрите рисунок ниже.

  • Прямой запуск – это самый простой и дешевый способ, потому что асинхронный двигатель подключен напрямую к источнику питания.
  • Соединения по специальной конфигурации обмоток – способ применим для двигателей, предназначенных для эксплуатации в нормальных условиях.

  • Использование УПП – это наиболее передовой способ из всех перечисленных методов. Здесь полупроводниковые приборы, такие как тиристоры или тринисторы, регулирующие скорость асинхронного двигателя, успешно заменяют механические компоненты.

Регулятор оборотов коллекторного двигателя

Большинство схем бытовых аппаратов и электрических инструментов создано на базе коллекторного электродвигателя 220 В. Такая востребованность объясняется универсальностью. Для агрегатов возможно питание от постоянного либо переменного напряжения. Достоинство схемы обусловлены обеспечением эффективного пускового момента.

Чтобы достичь более плавного пуска и обладать возможностью настройки частоты вращения, применяются регуляторы оборотов.

Пуск электродвигателя своими руками можно сделать, к примеру, таким образом.

20.Способы пуска двигателя постоянного тока.

Возможны три способа пуска двигателя в ход:

1) прямой пуск, когда цепь якоря приключается непосредственно к сети на ее полное напряжение;

2) пуск с помощью пускового реостата или пусковых сопротивлений, включаемых последовательно в цепь якоря;

3) пуск при пониженном напряжении цепи якоря.

прямой пуск применяется только для двигателей мощностью до нескольких сотен ватт, у которых Ra относительно велико и поэтому при пуске процесс пуска длится не более 1-2 сек.

Самым распространенным является пуск с помощью пускового реостата или пусковых сопротивлений

Способы пуска двигателя постоянного тока

1. Прямой пуск - обмотка якоря подключается непосредственно к сети.

Ток якоря двигателя определяется формулой . (4.1) Если считать, что при прямом пуске значения напряженияпитания U и сопротивления якорной обмотки R я остаются неизменными, то ток якоря зависит от противо - ЭДС Е . В начальный момент пуска якоря двигатель неподвижен (=0) и в его обмотке Е=0 .Поэтому при подключении к сети в обмотке возникает пусковой ток
. (4.2) Обычно сопротивлениеR я невелико, особенно у двигателей большой мощности, поэтому значение пускового тока достигает 20 раз превышающих номинальный ток двигателя.недопустимо больших значений, в 10 При этом создается опасность поломки вала машины и появляется сильное искрение под щетками коллектора. По этой причине такой пуск применяется только для двигателей малой мощности, у которых R я относительно велико.

2)Реостатный пуск - в цепь якоря включается пусковой реостат для ограничения тока. В начальный момент пуска при =0 и R п =мах ток якоря будет равен


. (4.3) Максимальное значение R п подбирают так, чтобы для машин большой и средней мощности ток якоря при пуске
, а для машин малой мощности
. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением рис 4.1. В начальный момент пуск осуществляется по реостатной характеристике 4, соответствующей максимальному значению сопротивленияR п , при этом двигатель развивает максимальный пусковой момент М пmax .Регулировочный реостат R р выводится так, чтобы I в и Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением скорости вращения ротора растет и ЭДС Е , а как следствие, уменьшается ток якоря, определяющий его величину. При достижении некоторого значения М пmin часть сопротивления R п выводится, вследствие чего момент снова возрастает до М пmax , двигатель переходит на работу по реостатной характеристике 3 и разгоняется до значения М пmin . Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатной характеристики до выхода на естественную характеристику 1.Средний вращающий момент при пуске определяется из выражения
. (4.4) двигатель при этом разгоняется с некоторым постоянным ускорением.

Аналогичный пуск возможен и для двигателей последовательного возбуждения. Количество ступеней пуска зависит от жесткости естественной характеристики и требований предъявляемых к плавности пуска. Пусковые реостаты рассчитываются на кратковременную работу под током.

В реальных устройствах пуск осуществляется автоматически. Микроконтроллер, по заданному алгоритму, управляет коммутирующими элементами (релейное управление), отключая секции пускового реостата и практически реализуя описанный выше процесс.

Алгоритм управления может быть построен с использованием трех основных принципов:

1) Принцип ЭДС

2) Принцип тока

3) Принцип времени.

Идею реализации данных принципов можно пояснить с помощью пусковой схемы на электромагнитных реле (что практически применялось до широкого внедрения микропроцессорных систем управления) рисунок 4.3. К якорю машины подключается параллельно ряд реле, которые с ростом скорости вращения, а значит, ЭДС, последовательно срабатывают и своими контактами выводят из работы секции пускового реостата, постепенно уменьшая сопротивление якорной цепи.

При использования принципа тока применяются последовательно включенные реле тока, которые дают команду через свои нормально замкнутые контакты на последовательное включение соответствующих контакторов К i при снижении тока до заданного уровня.

Принцип времени предполагает применение реле времени, которые через расчетные уставки времени дают команду на шунтирование секций реостата.

4)Пуск путем плавного повышения питающего напряжения - пуск осуществляется от отдельного регулируемого источника питания. Применяется для двигателей большой мощности, где нецелесообразно применять громоздкие реостаты из-за значительных потерь электроэнергии.

При управлении двигателями постоянного тока иногда возникает необходимость резкого изменения скорости (на пример пуск c 0% на 100% мощности или изменение скорости на протвоположную). Но такой режим работы двигателя требует очень высоких токов – в несколько раз больше, чем простое движение. Если, например, при вращении с постоянной скоростью двигатель потребляет ток порядка 500мА, то в момент пуска это значение может достигать 2-3 А. Из за этого приходится применять более мощное подсистему питания и контроллер.

Решить проблему пусковых токов можно плавным повышением скорости. Т.е. вместо мгновенного разгона двигатель будет разгоняться постепенно, при этом сглаживая пик потребления тока в момент пуска.

Подключим двигатель к motor-shield на безе L298P, как и в предыдущем примере:

Не забываем, что двигатель не имеет обатной связи, поэтому для контроля текущей скорости воспользуемя дополнительной переменной motorPower

unsigned long StartTimer; // Таймер для плавного пуска

pinMode (I1, OUTPUT);

for (motorPower=0;motorPower {

delay(StartTimeStep);

Теперь двигатель разгоняется более плавно. Разгон от 0 до 255 займет почти пол секунды, а установить интервал изменения в 1 мс – то вообще за четверть секунды. Невооруженным глазом разница не очень заметна. Но такое разгон намного более щадящий для силовой части. К тому-же скорость разгона мы можем регулировать, добиваясь нужного ускорения.

Вот только использование delay() не дает использовать параллельно

никаких других действий, поэтому реализуем плавный пуск с помощью таймеров, как при .

byte E1=5; // Управление скоростью двигателя – подключение к 5 выходу

byte I1=4; // Управление направлением вращения – подключение к 4 выходу

unsigned long StartTimer; // счетчик время для плавного пуска

int StartTimeStep=2; // Интервал изменения мощности двигателя, в мс

int StartPowerStep=1; // Один шаг изменения мощности двигателя

int motorPower; // Мощность двигателя

pinMode (E1, OUTPUT); // Задаем работу соответствующих пинов в качестве выходов

pinMode (I1, OUTPUT);

motorPower=0; // Начальная мощность - 0

digitalWrite (I1, HIGH); // На вывод I1 подан высокий логический уровень, мотор вращается в одну сторону

if (motorPower if ((millis()-StartTimer)>= StartTimeStep) // Проверяем, сколько прошло с последнего изменения скорости

// если больше, чем заданный интервал – увеличим скорость еще на один шаг

motorPower+= StartPowerStep; // увеличение скорости

analogWrite (E1, motorPower); // На выводе ENABLE управляющий сигнал с новой скоростью

StartTimer=millis(); // Начало нового шага

Теперь двигатель разгоняется плавно, причем параллельно с разгоном можно выполнять любые другие действия

Для пуска двигателей постоянного тока могут быть применены три способа:

1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;

2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;

3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.

Прямой пуск. Обычно в двигателях постоянного тока падение напряжения I ном ∑r во внутреннем сопротивлении цепи якоря составляет 5–10% от U ном , поэтому при прямом пуске ток якоря I п = U ном /∑r = (10 ÷ 20) I ном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ∑r относительно велико, и лишь в отдельных случаях–для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей I п = (4 ÷ 6) I ном.

Переходный процесс изменения частоты вращения n и тока якоря i a в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Т м . Для установления характера изменения n и i a при пуске двигателя с параллельным возбуждением будем исходить из уравнений:

где J – момент инерции вращающихся масс электродвигателя и сочлененного с ним производственного механизма; М н –тормозной момент, создаваемый нагрузкой.

Из (2.82б) определяем ток якоря

. (2.83)

Подставляя его значение в (2.82а), получаем

(2.84а)

, (2.84б)

U где – частота вращения при идеальном холостом ходе;

уменьшение частоты вращения при переходе

от холостого хода к нагрузке; n н = n 0 – Δn н –установившаяся частота вращения при нагрузке двигателя; – электромеханическая постоянная времени, определяющая скорость протекания переходного процесса.

При этом I н = М н /(с м Ф) – установившийся ток якоря после окончания процесса пуска, определяемый нагрузочным моментом М н .

Решая уравнение (2.84б), получаем

. (2.85а)

Постоянную интегрирования А находим из начальных условий: при t = 0; n = 0 и А = – n н . В результате имеем

. (2.85б)

Рис. 2.65 – Переходный процесс изменения частоты вращения и тока якоря при прямом пуске двигателя постоянного тока

Зависимость тока якоря от времени при пуске двигателя определяется из (2.83). Подставляя в него значение

, (2.85в)

полученное из (2.846) и (2.856), и заменяя n н = n 0 – Δn, имеем

. (2.86а)

Учитывая значение Δn н , n 0 , Т м и М н /с м Ф , получим

где I нач = U /∑r – начальный пусковой ток.

На рис. 2.65 приведены зависимости изменения тока якоря и частоты вращения (в относительных единицах) при прямом пуске двигателя с параллельным возбуждением. Время переходного процесса при пуске принимается равным (3–4) Т м. За это время частота вращения n достигает (0,95 – 0,98) от установившегося значения n н , а ток якоря I а также приближается к установившемуся значению.


Реостатный пуск. Этот способ получил наибольшее распространение. В начальный момент пуска при n = 0 ток I п = U/(r + r п). Максимальное сопротивление пускового реостата r п подбирается так, чтобы для машин большой и средней мощностей ток якоря при пуске I п = (1,4 ÷ 1,8) I ном, а для машин малой мощности I п = (2 ÷ 2,5) I ном. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 2.66, а ), соответствующей максимальному значению сопротивления r п пускового реостата; при этом двигатель развивает максимальный пусковой момент М п.макс.

Рис. 2.66 – Изменение частоты вращения и момента при реостатном пуске двигателей с параллельным и последовательным возбуждением

Регулировочный реостат r р. в в этом случае выводится так, чтобы ток возбуждения I в и поток Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения растет э. д. с. Е и уменьшается ток якоря I a =(U – E)/(r +r п ). При достижении некоторого значения М п.мин часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до М п.макс. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до достижения M п.мин. Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6,5,4,3 и 2 (см. жирные линии на рис. 2.66, а ) до выхода на естественную характеристику 1 . Средний вращающий момент при пуске М п.ср = 0,5 (М п.макс +М п.мин) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же образом пускается в ход двигатель с последовательным возбуждением (рис. 2.66, б ). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности M п.макс – М п.мин).

Пусковые реостаты рассчитывают на кратковременную работу под током.

На рис. 2.67 показаны зависимости тока якоря i a , электромагнитного момента М, момента нагрузки М н и частоты вращения n при реостатном пуске двигателя (упрощенные диаграммы).

Рис. 2.67 – Переходный процесс изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя постоянного тока

При выводе отдельных ступеней пускового реостата ток якоря i a достигает некоторого максимального значения, а затем уменьшается согласно уравнению (2.85б) до минимального значения. При этом электромеханическая постоянная времени и начальный ток будут иметь различные для каждой ступени пускового реостата значения:

;

В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Частота вращения n изменяется согласно уравнению

где n нач –начальная частота вращения при работе на соответствующей ступени пускового реостата.

Заштрихованная на рис. 2.67 область соответствует значениям динамического момента М дин = М М н,обеспечивающего разгон двигателя до установившейся частоты вращения.

Пуск путем плавного повышения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществлять путем плавного повышения напряжения, подаваемого на его обмотку. Но для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.